Università degli Studi di Udine OpenUniud - Archivio istituzionale delle tesi di dottorato
 

OpenUniud - Archivio istituzionale delle tesi di dottorato >
Udine Thesis Repository >
01 - Tesi di dottorato >

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10990/818

Autori: De Nart, Dario
Supervisore afferente all'Università: TASSO, CARLO
Centro di ricerca: DIPARTIMENTO DI SCIENZE MATEMATICHE, INFORMATICHE E FISICHE - DMIF
Titolo: Knowledge-Based Techniques for Scholarly Data Access: Towards Automatic Curation
Abstract (in inglese): Accessing up-to-date and quality scientific literature is a critical preliminary step in any research activity. Identifying relevant scholarly literature for the extents of a given task or application is, however a complex and time consuming activity. Despite the large number of tools developed over the years to support scholars in their literature surveying activity, such as Google Scholar, Microsoft Academic search, and others, the best way to access quality papers remains asking a domain expert who is actively involved in the field and knows research trends and directions. State of the art systems, in fact, either do not allow exploratory search activity, such as identifying the active research directions within a given topic, or do not offer proactive features, such as content recommendation, which are both critical to researchers. To overcome these limitations, we strongly advocate a paradigm shift in the development of scholarly data access tools: moving from traditional information retrieval and filtering tools towards automated agents able to make sense of the textual content of published papers and therefore monitor the state of the art. Building such a system is however a complex task that implies tackling non trivial problems in the fields of Natural Language Processing, Big Data Analysis, User Modelling, and Information Filtering. In this work, we introduce the concept of Automatic Curator System and present its fundamental components.
Parole chiave: Recommender Systems; Semantic Web; Artificial Intelligence; User Modelling; Scholarly Data; Natural Language Processing; Knowledge Representation
MIUR : Settore ING-INF/05 - Sistemi Di Elaborazione Delle Informazioni
Lingua: eng
Data: 3-apr-2017
Corso di dottorato: Dottorato di ricerca in Informatica
Ciclo di dottorato: 28
Università di conseguimento titolo: Università degli Studi di Udine
Luogo di discussione: Udine
Citazione: De Nart, D. Knowledge-Based Techniques for Scholarly Data Access: Towards Automatic Curation. (Doctoral Thesis, Università degli Studi di Udine, 2017).
In01 - Tesi di dottorato

Full text:

File Descrizione DimensioniFormatoConsultabilità
thesis.pdfTesi7,27 MBAdobe PDFVisualizza/apri


Tutti i documenti archiviati in DSPACE sono protetti da copyright. Tutti i diritti riservati.


Segnala questo record su
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

  ICT Support, development & maintenance are provided by CINECA. Powered on DSpace SoftwareFeedback CINECA